Classification of Normal and Pre-Ictal EEG Signals Using Permutation Entropies and a Generalized Linear Model as a Classifier

نویسندگان

  • Francisco O. Redelico
  • Francisco Traversaro
  • María del Carmen García
  • Walter Silva
  • Osvaldo A. Rosso
  • Marcelo Risk
چکیده

In this contribution, a comparison between different permutation entropies as classifiers of electroencephalogram (EEG) records corresponding to normal and pre-ictal states is made. A discrete probability distribution function derived from symbolization techniques applied to the EEG signal is used to calculate the Tsallis entropy, Shannon Entropy, Renyi Entropy, and Min Entropy, and they are used separately as the only independent variable in a logistic regression model in order to evaluate its capacity as a classification variable in a inferential manner. The area under the Receiver Operating Characteristic (ROC) curve, along with the accuracy, sensitivity, and specificity are used to compare the models. All the permutation entropies are excellent classifiers, with an accuracy greater than 94.5% in every case, and a sensitivity greater than 97%. Accounting for the amplitude in the symbolization technique retains more information of the signal than its counterparts, and it could be a good candidate for automatic classification of EEG signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier

Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...

متن کامل

Application of Non-Linear and Wavelet Based Features for the Automated Identification of Epileptic EEG signals

Epilepsy, a neurological disorder, is characterized by the recurrence of seizures. Electroencephalogram (EEG) signals, which are used to detect the presence of seizures, are non-linear and dynamic in nature. Visual inspection of the EEG signals for detection of normal, interictal, and ictal activities is a strenuous and time-consuming task due to the huge volumes of EEG segments that have to be...

متن کامل

Automatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers

Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...

متن کامل

Applying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification

Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states.  Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...

متن کامل

Prediction of Epileptic Seizures in Patients with Temporal Lobe Epilepsy (TLE) based on Cepstrum analysis and AR model of EEG signal

Epilepsy is a chronic disorder of brain function caused by abnormal and excessive electrical neurons discharge in the brain. Seizures cause disturbances in consciousness that occur without prior notice, so their prediction ability, based on EEG data, can reduce stress and improve quality of life. An epileptic patient EEG data consists of five parts: Ictal, Inter-Ictal, pre-Ictal, Post-Ictal, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017